Technical debt in machine learning

Reading Time: 2 minutes

Technical debt refers to the cost of any shortcuts or sub-optimal solutions taken in the development process that can result in difficulties and increased costs in future maintenance and software upgrades. The term “technical debt” was coined by Ward Cunningham in 1992. He likened the process of accumulating technical debt to taking out a loan. Just as with a financial loan, technical debt may accrue interest over time and require eventual repayment, with the added costs increasing exponentially. This blog focuses on the technical debt incurred by products used in developing Machine Learning (ML) models. These faulty tools prioritize speed and efficiency over long-term maintainability. Such shortcuts may lead to decreased accuracy, increased technical debt in machine learning, and higher costs in future maintenance and updates.

The ML journey

As shown in Figure 1, from end-to-end, the machine learning model development journey involves:

  • Data discovery
  • Data preprocessing
  • Model development and deployment
  • Model monitoring
  • Model governance

Figure 1: The ML model development journey

This journey keeps the results of the model accurate and relevant. At each step of the model journey, there is an extremely high probability of incurring technical debt if ML products do not enable the right integration choice.

Let’s look at the stages of the ML model development journey and learn where and how technical debt grows.

Figure 2: Types of debt across the ML model development journey

As demonstrated in Figure 2, various technical debts appear in relation to each stage of the ML model development journey. Let’s dive into each of them.

Data discovery

Most organizations are already in their data processing journey or have successfully consolidated their data sources through cloud migrations, enterprise data lakes, data meshes, or data catalogs. As such, ML products often support various connectors to all kinds of data sources available in the market. Unfortunately, this diversity ends up incurring a debt to maintain the latest versions of required drivers and their ever-evolving connection string parameters.

This connectors debt occurs due to connectivity integration issues with diverse data sources and the increased effort required to keep the connectors updated with the latest releases.

Data preprocessing

Data pre-processing quality is a deep-rooted issue in every organization for which no single solution exists. A lot of time is spent cleaning up data sets and preprocessing the data in the ML journey. The goal of all of this preprocessing is to create a dataset ready for utilization in building models. Additionally, dataset accumulation occurs when multiple versions of datasets are created to maintain intermediate stages of data preprocessing. This also causes a debt of storage and maintenance of unnecessary or underutilized datasets.

This datasets debt in machine learning occurs due to the abundance of intermediate datasets created during the data preparation process.

Model development and deployment

Various Integrated Development Environments (IDEs) are available for data scientists to develop models. As such, ML products should maintain the support of popular IDEs that enable development in trending programming languages such as Python, R, SAS etc. The maintenance of these IDEs results in container debt. Multiple versions of IDEs need to be maintained with support for multiple versions of underlying flavors of programming.

This container debt occurs due to the overhead of supporting a variety of IDEs and their differing versions, multiple ML frameworks, and an ever-growing list of open-source packages.

Model monitoring

Monitoring artifacts required for model evaluation varies for different types of models. For example, model metrics vary for regression, binary classification, and multi-class classifications. In addition, several types of drift might occur, resulting in a deviation of model quality. To continuously evaluate the models in an automated way and alert the users in case of deviating model quality, ML products accrue technical debt in terms of complexity and maintenance of evolving graphs and artifacts to support accurate monitoring.

This metrics debt occurs due to the complexity created by displaying many metrics for each model within a DataOps platform. This can confuse the user and result in a technical debt from calculating and maintaining accuracy on all metrics daily.

Model governance

Governance requirements vary based on the organization, domain, and geography. As such, a complex governance framework needs to be established for an ML product. This framework supports and caters to governance requirements without getting into the loop of customizing solutions for each customer. This requirement results in a complex web of roles, responsibilities and reports that must be maintained per organizational and governance requirements.

This compliance debt occurs in machine learning due to the inability to create instant reports needed to meet various regulatory, audit, administrative or compliance requirements.

Debt identification and avoidance with Refract

The product development process should consider the probability of the occurrence of these technical debts in machine learning and plan to avoid them as much as possible. At Refract, technical debt is one of the metrics we track to ensure that product users are not burdened with these ML product issues.

Solving connectors debt

Connectors debt can be reduced or mitigated by limiting connectors’ support to the most popular and widely used connectors available in the market. It can also be solved by partnering with products that are pioneers in providing connectors to all data sources. Supporting connectors in-house would mean tracking the connector versions regularly and keeping the drivers updated with the latest version.

Refract manages all data connectors in-house, monitors the changes being released on each connector, and promptly rolls out the changes to the product. This helps our customers to stay updated with the latest driver configurations.

Solving dataset debt

Fosfor Refract solves dataset debt by using versioning. This allows the user to easily view the previous versions of the dataset and review the various steps involved in each data preparation process. This strategy helps the data scientists understand the data preparation process incrementally and choose the ideal dataset for building models. Refract manages writing data back to its source and push-down processing to reduce technical debt.

Solving container debt

Refract solves container debt by managing the notebooks for data scientists in a containerized mode. This allows users to add newer versions of IDEs as new containers and simultaneously plan for the timely decommissioning of older versions of IDEs. This allows its users to work on the latest and secure IDEs without worrying about the effort required to maintain them.

Solving metrics debt

Fosfor Refract solves metrics debt by carefully choosing the most relevant metrics for a particular model. Refract also reduces the complexity for the user while accurately performing required choices in the background to show the metrics relevant to a particular model.

Solving compliance debt

Users spend a lot of time figuring out how to extract information that can be presented. Fosfor Refract solves this Compliance Debt by managing compliance and audit requirements. It provides easy options to extract model documentation and user audit information.

Conclusion

Overall, the probability of technical debt in machine learning products is higher if not well thought through during the design process. There may even be more debt classifications than those we have discussed. Still, by understanding and addressing technical debt at each stage of the end-to-end ML journey, you can set your ML projects up for success!

Author

Rakesh Gadiparthi

Technical Product Manager, Fosfor

Rakesh Gadiparthi has over 13 years of experience in the IT industry and has worked with various clients in banking, insurance, healthcare and retail. He has expertise in program management, delivery management, agile transformation and digital transformation. He has a proven track record of delivering complex programs and projects within budget and timelines. He is passionate about driving business value through technology and has successfully led large-scale digital transformation initiatives for clients across the globe. He is a certified Project Management Professional (PMP) and a Certified Product Owner (CPO).

More on the topic

Read more thought leadership from our team of experts

Generative AI - Accelerate ML operations using GPT

As Data Science and Machine Learning practitioners, we often face the challenge of finding solutions to complex problems. One powerful artificial intelligence platform that can help speed up the process is the use of Generative Pretrained Transformer 3 (GPT-3) language model.

Read more

How to choose the best AI/ML platform for your business

Although according to a 2020 McKinsey study1, 50% of the companies surveyed had already adopted AI in at least one business function, the state of AI in 2023 according to a similar McKinsey study suggests that adoption rates have effectively plateaued over the last 3 years2.

Read more

Accelerate your production ML journey with Refract

As we all know, production ML (Machine Learning) is more engineering than machine learning. Building a prototype in machine learning has become very simple nowadays, all thanks to different open-source projects like sci-kit, TensorFlow, Keras, etc. But operationalizing that model to get the insights from the model which can be used in day-to-day business decisions is challenging and needs more engineering knowledge than data science knowledge.

Read more
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Accept
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active

What is a cookie?

A cookie is a small piece of data that a website asks your browser to store on your computer or mobile device. The cookie allows the website to “remember” your actions or preferences over time. On future visits, this data is then returned to that website to help identify you and your site preferences. Our websites and mobile sites use cookies to give you the best online experience. Most Internet browsers support cookies; however, users can set their browsers to decline certain types of cookies or specific cookies. Further, users can delete cookies at any time.

Why do we use cookies?

We use cookies to learn how you interact with our content and to improve your experience when visiting our website(s). For example, some cookies remember your language or preferences so that you do not have to repeatedly make these choices when you visit one of our websites.

What kind of cookies do we use?

We use the following categories of cookie:

Category 1: Strictly Necessary Cookies

Strictly necessary cookies are those that are essential for our sites to work in the way you have requested. Although many of our sites are open, that is, they do not require registration; we may use strictly necessary cookies to control access to some of our community sites, whitepapers or online events such as webinars; as well as to maintain your session during a single visit. These cookies will need to reset on your browser each time you register or log in to a gated area. If you block these cookies entirely, you may not be able to access gated areas. We may also offer you the choice of a persistent cookie to recognize you as you return to one of our gated sites. If you choose not to use this “remember me” function, you will simply need to log in each time you return.
Cookie Name Domain / Associated Domain / Third-Party Service Description Retention period
__cfduid Cloudflare Cookie associated with sites using CloudFlare, used to speed up page load times 1 Year
lidc linkedin.com his is a Microsoft MSN 1st party cookie that ensures the proper functioning of this website. 1 Day
PHPSESSID ltimindtree.com Cookies named PHPSESSID only contain a reference to a session stored on the web server When the browsing session ends
catAccCookies ltimindtree.com Cookie set by the UK cookie consent plugin to record that you accept the fact that the site uses cookies. 29 Days
AWSELB Used to distribute traffic to the website on several servers in order to optimise response times. 2437 Days
JSESSIONID linkedin.com Preserves users states across page requests. 334,416 Days
checkForPermission bidr.io Determines whether the visitor has accepted the cookie consent box. 1 Day
VISITOR_INFO1_LIVE Tries to estimate users bandwidth on the pages with integrated YouTube videos. 179 Days
.avia-table-1 td:nth-of-type(1):before { content: 'Cookie Name'; } .avia-table-1 td:nth-of-type(2):before { content: 'Domain / Associated Domain / Third-Party Service'; } .avia-table-1 td:nth-of-type(3):before { content: 'Description'; } .avia-table-1 td:nth-of-type(4):before { content: 'Retention period'; }

Category 2: Performance Cookies

Performance cookies, often called analytics cookies, collect data from visitors to our sites on a unique, but anonymous basis. The results are reported to us as aggregate numbers and trends. LTI allows third-parties to set performance cookies. We rely on reports to understand our audiences, and improve how our websites work. We use Google Analytics, a web analytics service provided by Google, Inc. (“Google”), which in turn uses performance cookies. Information generated by the cookies about your use of our website will be transmitted to and stored by Google on servers Worldwide. The IP-address, which your browser conveys within the scope of Google Analytics, will not be associated with any other data held by Google. You may refuse the use of cookies by selecting the appropriate settings on your browser. However, you have to note that if you do this, you may not be able to use the full functionality of our website. You can also opt-out from being tracked by Google Analytics from any future instances, by downloading and installing Google Analytics Opt-out Browser Add-on for your current web browser: https://tools.google.com/dlpage/gaoptout & cookiechoices.org and privacy.google.com/businesses
Cookie Name Domain / Associated Domain / Third-Party Service Description Retention period
_ga ltimindtree.com Used to identify unique users. Registers a unique ID that is used to generate statistical data on how the visitor uses the web site. 2 years
_gid ltimindtree.com This cookie name is asssociated with Google Universal Analytics. This appears to be a new cookie and as of Spring 2017 no information is available from Google. It appears to store and update a unique value for each page visited. 1 day
_gat ltimindtree.com Used by Google Analytics to throttle request rate 1 Day
.avia-table-2 td:nth-of-type(1):before { content: 'Cookie Name'; } .avia-table-2 td:nth-of-type(2):before { content: 'Domain / Associated Domain / Third-Party Service'; } .avia-table-2 td:nth-of-type(3):before { content: 'Description'; } .avia-table-2 td:nth-of-type(4):before { content: 'Retention period'; }

Category 3: Functionality Cookies

We may use site performance cookies to remember your preferences for operational settings on our websites, so as to save you the trouble to reset the preferences every time you visit. For example, the cookie may recognize optimum video streaming speeds, or volume settings, or the order in which you look at comments to a posting on one of our forums. These cookies do not identify you as an individual and we don’t associate the resulting information with a cookie that does.
Cookie Name Domain / Associated Domain / Third-Party Service Description Retention period
lang ads.linkedin.com Set by LinkedIn when a webpage contains an embedded “Follow us” panel. Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in. When the browsing session ends
lang linkedin.com In most cases it will likely be used to store language preferences, potentially to serve up content in the stored language. When the browsing session ends
YSC Registers a unique ID to keep statistics of what videos from Youtube the user has seen. 2,488,902 Days
.avia-table-3 td:nth-of-type(1):before { content: 'Cookie Name'; } .avia-table-3 td:nth-of-type(2):before { content: 'Domain / Associated Domain / Third-Party Service'; } .avia-table-3 td:nth-of-type(3):before { content: 'Description'; } .avia-table-3 td:nth-of-type(4):before { content: 'Retention period'; }

Category 4: Social Media Cookies

If you use social media or other third-party credentials to log in to our sites, then that other organization may set a cookie that allows that company to recognize you. The social media organization may use that cookie for its own purposes. The Social Media Organization may also show you ads and content from us when you visit its websites.

Ref links:

LinkedInhttps://www.linkedin.com/legal/privacy-policy Twitterhttps://gdpr.twitter.com/en.html & https://twitter.com/en/privacy & https://help.twitter.com/en/rules-and-policies/twitter-cookies Facebookhttps://www.facebook.com/business/gdpr Also, if you use a social media-sharing button or widget on one of our sites, the social network that created the button will record your action for its own purposes. Please read through each social media organization’s privacy and data protection policy to understand its use of its cookies and the tracking from our sites, and also how to control such cookies and buttons.

Category 5: Targeting/Advertising Cookies

We use tracking and targeting cookies, or ask other companies to do so on our behalf, to send you emails and show you online advertising, which meet your business and professional interests. If you have registered on our websites, we may send you emails, tailored to reflect the interests you have shown during your visits. We ask third-party advertising platforms and technology companies to show you our ads after you leave our sites (retargeting technology). This technology allows us to make our website services more interesting for you. Retargeting cookies are used to record anonymized movement patterns on a website. These patterns are used to tailor banner advertisements to your interests. The data used for retargeting is completely anonymous, and is only used for statistical analysis. No personal data is stored, and the use of the retargeting technology is subject to the applicable statutory data protection regulations. We also work with companies to reach people who have not visited our sites. These companies do not identify you as an individual, instead rely on a variety of other data to show you advertisements, for example, behavior across websites, information about individual devices, and, in some cases, IP addresses. Please refer below table to understand how these third-party websites collect and use information on our behalf and read more about their opt out options.
Cookie Name Domain / Associated Domain / Third-Party Service Description Retention period
BizoID ads.linkedin.com These cookies are used to deliver adverts more relevant to you and your interests 183 days
iuuid demandbase.com Used to measure the performance and optimization of Demandbase data and reporting 2 years
IDE doubleclick.net This cookie carries out information about how the end user uses the website and any advertising that the end user may have seen before visiting the said website. 2,903,481 Days
UserMatchHistory linkedin.com This cookie is used to track visitors so that more relevant ads can be presented based on the visitor’s preferences. 60,345 Days
bcookie linkedin.com This is a Microsoft MSN 1st party cookie for sharing the content of the website via social media. 2 years
__asc ltimindtree.com This cookie is used to collect information on consumer behavior, which is sent to Alexa Analytics. 1 Day
__auc ltimindtree.com This cookie is used to collect information on consumer behavior, which is sent to Alexa Analytics. 1 Year
_gcl_au ltimindtree.com Used by Google AdSense for experimenting with advertisement efficiency across websites using their services. 3 Months
bscookie linkedin.com Used by the social networking service, LinkedIn, for tracking the use of embedded services. 2 years
tempToken app.mirabelsmarketingmanager.com When the browsing session ends
ELOQUA eloqua.com Registers a unique ID that identifies the user’s device upon return visits. Used for auto -populating forms and to validate if a certain contact is registered to an email group . 2 Years
ELQSTATUS eloqua.com Used to auto -populate forms and validate if a given contact has subscribed to an email group. The cookies only set if the user allows tracking . 2 Years
IDE doubleclick.net Used by Google Double Click to register and report the website user’s actions after viewing clicking one of the advertiser’s ads with the purpose of measuring the efficiency of an ad and to present targeted ads to the user. 1 Year
NID google.com Registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. 6 Months
PREF youtube.com Registers a unique ID that is used by Google to keep statistics of how the visitor uses YouTube videos across different web sites. 8 months
test_cookie doubleclick.net This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor’s browser supports cookies. 1,073,201 Days
UserMatchHistory linkedin.com Used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor’s preferences. 29 days
VISITOR_INFO1_LIVE youtube.com 179 days
.avia-table-4 td:nth-of-type(1):before { content: 'Cookie Name'; } .avia-table-4 td:nth-of-type(2):before { content: 'Domain / Associated Domain / Third-Party Service'; } .avia-table-4 td:nth-of-type(3):before { content: 'Description'; } .avia-table-4 td:nth-of-type(4):before { content: 'Retention period'; }
Third party companies Purpose Applicable Privacy/Cookie Policy Link
Alexa Show targeted, relevant advertisements https://www.oracle.com/legal/privacy/marketing-cloud-data-cloud-privacy-policy.html To opt out: http://www.bluekai.com/consumers.php#optout
Eloqua Personalized email based interactions https://www.oracle.com/legal/privacy/marketing-cloud-data-cloud-privacy-policy.html To opt out: https://www.oracle.com/marketingcloud/opt-status.html
CrazyEgg CrazyEgg provides visualization of visits to website. https://help.crazyegg.com/article/165-crazy-eggs-gdpr-readiness Opt Out: DAA: https://www.crazyegg.com/opt-out
DemandBase Show targeted, relevant advertisements https://www.demandbase.com/privacy-policy/ Opt out: DAA: http://www.aboutads.info/choices/
LinkedIn Show targeted, relevant advertisements and re-targeted advertisements to visitors of LTI websites https://www.linkedin.com/legal/privacy-policy Opt-out: https://www.linkedin.com/help/linkedin/answer/62931/manage-advertising-preferences
Google Show targeted, relevant advertisements and re-targeted advertisements to visitors of LTI websites https://policies.google.com/privacy Opt Out: https://adssettings.google.com/ NAI: http://optout.networkadvertising.org/ DAA: http://optout.aboutads.info/
Facebook Show targeted, relevant advertisements https://www.facebook.com/privacy/explanation Opt Out: https://www.facebook.com/help/568137493302217
Youtube Show targeted, relevant advertisements. Show embedded videos on LTI websites https://policies.google.com/privacy Opt Out: https://adssettings.google.com/ NAI: http://optout.networkadvertising.org/ DAA: http://optout.aboutads.info/
Twitter Show targeted, relevant advertisements and re-targeted advertisements to visitors of LTI websites https://twitter.com/en/privacy Opt out: https://twitter.com/personalization DAA: http://optout.aboutads.info/
. .avia-table tr {} .avia-table th, .flex_column .avia-table td { color: #343434; padding: 5px !important; border: 1px solid #ddd !important; } .avia-table th {background-color: #addeec;} .avia-table tr:nth-child(odd) td {background-color: #f1f1f1;}
Save settings
Cookies settings